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1 Introduction

This is the final report for the project under Contract No. F61775-02-C4048. The
main motivation for the project was to explore suitable theoretical and experimental
approaches to characterise flight dynamics and control of insects, originally focussing
on the hovering flight ofEristalis hoverflies. The study was soon re-scoped to inves-
tigate the desert locustSchistocerca gregaria. Although the locust is an interesting
insect in its own right, there were two main motivations for this change of focus.
Firstly, it proved prudent from the experimental viewpoint to work with the larger and
more robust locust, thus allowing us to perfect the experimental set-up and techniques
before proceeding to the smaller hoverflies. Secondly, although forward flight was not
originally envisaged as forming part of the study, it quickly became apparent that the
greatest difficulties in experimentation were those associated with forward flight, not
hover. Simulating forward flight poses such a significant challenge—but is so important
to reverse engineering insect flight control—that we elected to develop from the outset
a system capable of simulating natural forward flight. This approach has thus allowed
us not only to re-focus, but also to broaden the study.

Investigating the flight dynamics and control of insects, as opposed to manmade
vehicles, poses its own unique problems, limiting applicability of a large body of the
relevant aeronautical knowledge. The first and foremost difficulties are experimental in
nature, exacerbated by the fact that insects are small and fragile. However, the key issue
is that neither wind tunnel, nor free flight, testing can be done satisfactorily with the
present state-of-the-art, especially from the point of view of meaningful aerodynamic
force and moment measurement. In standard aeronautical wind tunnel testing, a model
is mounted on a force balance which, in turn, is placed on a moving platform, thus
allowing direct force and moment measurement, while controlling the model’s orien-
tation with respect to the tunnel’s airflow. There are two difficulties with this standard
aeronautical set-up in the context of insect flight. Firstly, one cannot make a distinction
between the pilot and the airframe—the insect flight control system cannot be switched
off to investigate open-loop dynamics. Secondly, insect flight behaviour is influenced
by many of its sensory modalities, including vision, and it is difficult to provide artificial
stimulation that faithfully reproduces all forms of natural excitation at the same time.
In free flight testing the second difficulty is mitigated, but at the price of losing the
possibility of direct force/moment measurement.

These experimental challenges have counter-intuitive consequences for theoretical
analysis. It is not unreasonable to represent the insect flight dynamics by the standard
six-degrees-of-freedom (6dof) equations of motion, so the fundamental question is
then: “What do these equations represent?” Since it is impossible to switch off the
insect’s flight control system, the conventional approach of deriving the open-loop
dynamics, then postulating a feedback control law and closing the loop is unfeasible.
Moreover, unless all of the sensory modalities are artificially stimulated in a manner
consistent with natural flight, the insect’s control system may be confused. Indeed,
the animal will beat its wings as it would normally do in free flight, but some of
the expected flight dynamic effects will not be detected by the sensors. Hence, the
physiologically intact muscles-wings-sensors loop is broken by the constraints of the
experiments and what is observed is neither open- nor closed-loop dynamics, but what
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we term “broken dynamics” [1]. Therefore, the central question is how meaningful it
is to input the measurements of the experiments to the 6dof equations of motion. It is
likely that within the limitations of the experimental set-up available in this project, we
saw various aspects of broken dynamics.

If what was observed was indeed broken dynamics, how useful was the exercise?
There are two important advantages of this work: 1) real-life application of both
theoretical and experimental tools of advanced flight dynamics for insects, 2) lessons
learnt from 1 suggesting ways of overcoming the limitations of the set-up used. This
report focusses largely on 1, commenting in Section 3 on 2.

This document is structured as follows. Section 2 covers theoretical developments,
while Section 3 focusses on the experimental work. Due to the abundance of mathe-
matical modelling tools, and the experimental difficulties described above, it is easy to
propose a variety of mathematical models, but it is much more challenging to support
the models with realisable experiments. In this context, we consider the non-linear time
periodic modelling (NLTP) framework as an appropriate combination of theory and
experiment and a major contribution of this project. The details of the approach and its
results are described in a reprint of our paper [1] which constitutes an appendix to this
report. The body of Section 2 presents other theoretical ideas generated in the project,
but not realised due to the limited resources and/or limitations of the experimental state-
of-the-art. The body of Section 3 presents advances in the experimental techniques
which go beyond the set-up described in [1] and the concomitant results.

2 Theoretical work

This section presents theoretical developments generated during the project which
could not yet be accompanied by in-depth experimental work due to the limited re-
sources and/or limitations of the experimental state-of-the-art. We begin with the basics
of flight dynamics in the context of insect flight in Section 2.1. This is followed by a
short exposition of external (Section 2.2) and internal (Section 2.3) modelling. This
framework is independent of the NLTP model [1], but can be applied in the NLTP
context. By contrast, the mathematical tools described in Sections 2.4 to 2.6 were
identified as specialised techniques relevant to the NLTP modelling framework.

2.1 Basics

Flight dynamics arise because the insect trajectory cannot change instantaneously in
response to the aerodynamic force and moment generated by flapping wings. This
is due to complex interactions of the inertia of the insect’s body with the airflow
around the body. Assuming that the body is rigid and longitudinally symmetric, the
interactions are quantified by the equations of motion [2], [3]:

m(u̇ − vr + wq) = mgx + X (1)

m(v̇ + ur − wp) = mgy + Y (2)

m(ẇ − uq + vp) = mgz + Z (3)

Ixx ṗ + (Izz − I yy)qr − Ixz(ṙ + pq) = L (4)
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I yyq̇ − (Izz − Ixx)pr + Ixz(p2
− r 2) = M (5)

Izzṙ + (I yy − Ixx)pq − Ixz( ṗ − qr) = N. (6)

For an insect of massm and inertia tensorI the coordinate system is fixed to its body
at the centre of gravity, see Figure 1. The translational velocity isV = (u, v, w) and
the angular velocityω = (p, q, r ). Also, the aerodynamic forceF = (X, Y, Z),
the aerodynamic momentM = (L , M, N), and the gravity vector is resolved as
g = (gx, gy, gz). Equations (1)–(6) can be rewritten in terms of the sideslip angleβ =

sin−1(v/V) and the angle of attackα = sin−1(u/V cosβ), whereV =
√

u2 + v2 + w2

is the speed.

Figure 1: Coordinate system and notation for insect flight dynamics equations.

It is convenient to have a short-hand for (1)–(6) in the form:

ẋ = fo(x, u) (7)

with the statex = (u, v, w, p, q, r ) and the control inputu = (X, Y, Z, L , M, N). The
key to successful flight is purposeful generation of the control inputu, i.e. aerodynamic
force F and momentM . The insect controls their production by modulating the
flapping of its wings, comparing the actual and required trajectory, so that a feedback
loop is formed to follow the required trajectory. Since in equation (7) the controlu is
not specified as a function ofx, i.e. the feedback loop has not been defined, it is called
open-loop dynamics.

For piloted aircraft, the required trajectoryr is known from the aircraft mission
and/or flight manual. Similarly, the feedback lawφ is also known, as it was specified
when the aircraft was designed. In a manoeuvre, aircraft flight dynamics arise from
substitutingu(t) = φ(r (t), x(t), t) in (7) to obtain the closed-loop dynamics:

ẋ = fo(x, u)|u=φ(r ,x,t) = fc(x, t). (8)
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The distinction between the “pilot” and the “aircraft” cannot be made for an insect,
and the mission (or “flight manual”) can only be speculated about. There is no pos-
sibility of asking the pilot (the insect itself) or the designer (natural selection) about
the required trajectoryr or the feedback lawφ used. Hence, the open-loop description
(7) cannot be obtained experimentally. However, it may still be possible to deduce
the closed-loop descriptionfc to gain conceptual, functional and physical insights into
flight dynamics of free-flying, manoeuvrable insects. Subsequent deduction offo (and
thusr andφ) from fc is then a separate task.

2.2 External modelling: Bifurcation analysis

The purpose of external modelling is to derive a tractable mathematical description
of free-flying, manoeuvrable insects which would be experimentally feasible, while
capturing the nonlinear and time-varying complexity of the flight dynamics involved.

When the aerodynamic force and moment are balanced by the insect’s weight, the
insect will be in steady flight. Linearisation of equations (1)–(6) around the steady
flight trajectoryx̄ approximates (8) with

δ ẋ = Acδx, (9)

where the variableδx = x − x̄ is a perturbation of the trajectorȳx. For a constant
trajectory,x̄(t) ≡ const,Ac is a constant matrix. If the steady flight is periodic,x̄(t +

T) = x̄(t), then the matrix is periodic (time-varying),Ac(t + T) = Ac(t). Both cases
are mathematically tractable [4].

In contrast to steady flight, manoeuvres entail the nonlinear, dynamic phenomena
of: 1) inertial coupling [3], see equations (4)–(6), 2) aerodynamic cross-coupling [5],
i.e. interdependence among the components ofF andM , and 3) unsteady aerodynamics
[6]. Linearisation (9) simplifies away 1) and 2), but the effects of 3) can be included,
albeit in an approximate fashion, as is now explained on the example of the pitching
momentM .

The pitching momentM in (9) is assumed to depend linearly on the current value of
the angle of attackα, i.e. M(t) = Mαα(t), whereMα is a constant. In manoeuvre, the
pitching moment will not change instantaneously in response to changes in the angle
of attack, due to the effect of the wake. This dependence of time history [7] is the
essence of unsteady aerodynamics and in this example is related to the Wagner effect
[8], possibly relevant to insect flight [9]. The coefficientMα will not be a constant, but
a function of time according to the linear integral equation:

Mα(t) = M∞
α

(
K (t)α(t0) +

∫ t

t0
K (t − τ)α′(τ )dτ

)
, (10)

where M∞
α is the steady value. Assuming that the kernelK is known, substitution

of (10) to (9) will result in an integro-differential equation and the analysis becomes
involved. However, only the recent time history has significant influence, so it is
feasible [10, 11] to approximate (10) as

Mα(t) ≈ Mαα(t) + Mα̇α̇(t), (11)
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where both coefficientsMα andMα̇ are constant.
Inclusion of approximate unsteady effects, as in (11), leads to representingX, Y,

Z in (1)–(3) andL, M , N in (4)–(6) as linear combinations ofδx andδ ẋ, so that (9)
becomes

Eδ ẋ = Acδx. (12)

Here the matrixE has constant entries and is invertible, so that both sides of (12) can
be multiplied byE−1 and the result is mathematically no more involved than (9).

Formulae (10) and (11) are valid for small values ofα. In severe manoeuvres [12]
the integral equation corresponding to (10) is nonlinear, so thatMα and Mα̇ in (11)
depend onα andα̇,

Mα = Mα(α, α̇)

Mα̇ = Mα̇(α, α̇), (13)

rather than being constant. This makes (9) quasi-linear [13]

δ ẋ = Ac(δx, δ ẋ)δx, (14)

i.e. the entries of the matrixAc are no longer constant, but depend on the perturbation
δx and its derivativeδ ẋ. Unlike for (12), it may not be possible to express (14) with
δ ẋ on one side of the equation. The resulting implicit, nonlinear differential equation
is not easy to analyse and use.

An attractive alternative is to combine the fully nonlinear description (8) with an
exhaustive collection of its linear approximations (12), so that both nonlinear and
unsteady aspects are captured in a mathematically tractable way. This alternative
is realised by bifurcation analysis, a state-of-the-art approach to nonlinear aircraft
dynamics [14]. The validity and usefulness of this approach has been extensively
verified over the last twenty years on real data from manoeuvring fighter aircraft: the F-
8 [15, 16], the F-4 [17, 18], the F-14 [19], the F-16 [20] and the research configurations
of their modern successors: the F-18/HARV [21, 22], HIRM [23, 24].

The first step in bifurcation analysis [17, 19] is to calculate all the steady states of
the system by settingfc(x, t) ≡ 0 in (8). Then, local stability of each steady state
is investigated by examining the eigenvalues of the matrixE−1Ac in (12): negative
eigenvalues mean that the steady state is stable, positive that it is unstable. Transition
from a stable to unstable steady state (orvice versa) means that some eigenvalues
will continuously pass through zero. Changes in the stability of a steady state are
manifestations of nonlinearity and lead to qualitative changes of dynamic behaviour
which are called bifurcations. Such qualitative changes can be analysed by the well-
developed mathematics of bifurcation theory [25, 26, 27], together with the associated
numerical and software tools [28, 29].

The essence of the external modelling approach to insect flight dynamics is: (i) to
obtain empirically a nonlinear, unsteady model (8) with dynamic stability derivatives
(13), and (ii) apply bifurcation analysis to the resulting model.

2.3 Internal modelling: Sensor rich feedback control

Insect flight dynamics are complex [9, 30] and are modelled by nonlinear differential
equations. Their real-time solution requires considerable computing resources, while
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flight control commands probably originate from a few hundred neurons. Although
individual neurons do not function in the same way as an on-off (binary) transistor,
making it difficult to translate number of neurons directly into computing power, it is
reasonable to assume that these few neurons give the fly rather little processing power.
At the very least, it is unlikely that insects solve differential equations by general
purpose computation as the digital computers of aircraft do in real-time.

On the other hand, a typical insect brain, such as that of the blowflyCalliphora[31],
receives sensory inputs from ca 80,000 receptor axons and has ca 338,000 neurons.
The sensor rich character of this architecture is reflected by the fact that 98% of the
neurons are used for sensory processing, as opposed to general purpose computation as
in digital microprocessors. In contrast, there are only about a dozen of wing muscles,
so the system is not actuator rich. For flying, the visual system is of critical importance
[32, 33, 34], as are some mechanical sensors including antennae and wind-sensitive
hairs. Two-winged flies, or Diptera, also have rotation sensors, called halteres [35, 36].
Most of the neural processing is devoted to vision and the insect’s perception of the
optic flow generated by flight is key to understanding its flight dynamics.

The fly’s compound (made of ommatidia) eyes allow it to survey essentially the
whole of the surrounding space, i.e. the full 4π steradians of the sphere on which
the space is projected [37]. Further, the ommatidia outputs are processed locally
by elementary motion detectors (EMDs). The EMD signals are then integrated by
tangential neurons [38] to form a global vector field representing the relative motion of
the insect with respect to its surroundings. This integration is done by at least thirteen
tangential neurons [37] and each tangential neuron represents half (2π steradians) of
the global vector field. Each tangential neuron responds to all kinds of optic flows, but
is most sensitive to the flow corresponding to a specific, or preferred, direction of the
insect’s motion, see Figure 2.

A flying insect does not integrate its equations of motion numerically (8) in real
time, but what it does must be equivalent to having solutions of such equations. The
main hypothesis of the sensor rich feedback control concept [39] is that a fly (or locust)
knows the solutions from optic flow measurement afforded by its vision system. There
are three aspects of the theory.

Firstly, the vector fieldφ of the optic flow is an encoded representation of the vector
field µ of the dynamics of relative motion of the insect with respect to its patterned
surroundings. The vector fieldφ of the optic flow, as in Figure 3, is a depiction of the
kinematics of the relative motion. What must be inferred fromφ is the dynamics of this
motion, i.e. the vector fieldµ, and thence the vector fieldfc of the absolute dynamics
(8). For a given trajectory and control lawfc is the same, whileµ will depend on the
surroundings.

Secondly, the vector fields considered are formed on a sphere, a situation for which
an extensive theory [40, 41] is available. The two-dimensional sphere has particularly
convenient global (topological) properties leading to powerful results. For example,
every smooth vector field must have at least one point at which the corresponding vector
vanishes [42]; two such singular points can be seen in Figure 3. These are elementary
manifestations of the well-developed [43] theory of the (singularity) index of vector
fields, which is particularly powerful [44, 45] for the two-dimensional sphere. It is
possible that the fly needs only to detect singularities to infer several global properties
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Figure 2: Preferred rotation axes of VS tangential neurons [37], i.e. directions of
insect’s motion generating the optic flow to which a given VS neuron’s response is
best matched.

Figure 3: Optic flowφ representation of the vector fieldµ of the relative motion of
the fly with respect to its surroundings when rotating along the long axis of its body (f
frontal,c caudal,d dorsal,v ventral,Ar axis of rotation); from [38].
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of its flight dynamics.
Thirdly, the insect can, through its tangential neurons [37], simultaneously measure

overlapping patches of the global vector field, each patch covering at least a half-
sphere. It is a more natural representation of a sphere than the Mercator projection
of Figure 3 where two antipodal points are represented discontinuously as lines. It
also enables forming a system of several second-order equations, so that recovering
six degrees of freedom is possible. Moreover, tangential neurons are matched filters:
they always respond to the insect’s motion, but respond best (are tuned to) rotations or
translations along certain directions in space, see Figure 2. This may allow resolution
of geometric ambiguities in representing the absolute dynamics of the fly in the three-
dimensional Cartesian space from their projection on a two-dimensional sphere. Also,
the mutiple views of the vector field may allow its representation via orthogonal or
even the Hodge decomposition [46]. Finally, since several overlapping patches (visual
fields) are available simultaneously, a series of small (and thus easily controlled) ad-
justments are needed for the desired patterns of the vector field to be achieved.

In summary, sensor rich feedback control relies on extensive measurement, as
opposed to heavy computation, of the quantities of interest. The visual system of the fly
represents its motion relative to the environment through optic flow representation of
the vector field involved. The underlying differential equations need not be integrated
numerically, as their solutions are available through interpolation of the global repre-
sentation of the relevant vector field. Also, this redundant representation may allow
fine control with little computation.

The focus of the proposed internal modelling approach is understanding the re-
lations between the vector fields:φ of the optic flow,µ of the dynamics of relative
motion, andfc of the dynamics of the absolute motion (external model).

2.4 Non-linear time-periodic models

In [1] we proposed and derived a semi-empirical nonlinear time periodic (NLTP) model
of the longitudinal flight dynamics of desert locust, see equations (5.1)–(5.4) on page
209 of [1]. In that model nonlinearity comes from inertial and kinematic couplings,
while the unsteady (and nonlinear) aerodynamics is represented as periodic input, since
the force production is a result of cyclical wingbeat.

Mathematically, this can be interpreted as a nonlinear system forced by nonlinear
oscillations and raises a few questions of theoretical and practical import. Some of
these are considered in the discussion section of [1], especially §§6.5–6.6 between
pages 218–220, where conjectures about (i) limit cycle control, (ii) orbital stability and
(iii) asymptotically autonomous systems are proposed. Below we consider some new
aspects of (i), see Section 2.5, and also point out some tools relevant to (iii), see Section
2.6.

The NLTP approach is analogous in some respects to the time-periodic models
used to analyse helicopter flight dynamics in situations where the periodic rotor forces
interact with the natural modes of the body (so-called ‘air resonance’ problems [47, 48,
49, 50]). However, whereas coupled rotor-fuselage models of helicopters have tended
to use quasi-steady aerodynamic modelling [47, 49], the empirical measurements used
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to parameterise our time-periodic model of locust flight automatically account for the
periodic influence of unsteady aerodynamics.

The theoretical and empirical basis of the NLTP model is dealt with in full detail in
the reprint of our paper [1] appended to this report.

2.5 Synchronisation

The NLTP model [1] is novel, especially in the context of insect flight dynamics, but
at the same time belongs to the large subject of Nonlinear Oscillations. Interestingly,
there are at least three issues here that are seldom considered together in the Theory of
Oscillations, namely:

1. when will the solutions be oscillatory?

2. when will the solutionsnot be oscillatory?

3. how can 1 and/or 2 be effected by a limit cycle control scheme?

There are many mathematical results which throw light on each of these questions
separately, but it does not seem immediately obvious how the disparate mathematical
techniques involved could be used in an integrated way. An interesting alternative is
to go back to the physical and engineering origins of nonlinear oscillations where an
integrated approach was a necessityper force. This alternative goes under the name of
“synchronisation”, e.g. see [51], [52], [53]. There has been a resurgence of interest in
the subject due to the recent interest in chaos, but this aspect is not relevant to insect
flight dynamics.

Systems as diverse as coupled clocks, flashing fireflies, cardiac pacemakers, firing
neurons, and applauding audiences exhibit a tendency to operate in synchrony, i.e. by
tuning and retuning their nonlinear oscillations. A precise definition of synchronisation
in general is usually either too restrictive or too broad, but includes phase locking and
frequency entrainment, periodic forcing or interaction of periodic oscillators and noise-
influenced synchronisation. In all cases, the dynamical system splits into subsystems
that affect each other by interaction, and the problem is to understand how the inter-
action determines the dynamics of the system as a whole. In the context of the NLTP
model of insect flight dynamics the phenomena of interest are:

1. synchronisation of a periodic oscillator by external force

2. suppression of oscillations

As for 1, this entails both phase and frequency locking and can be achieved by
applying a weak force, i.e. asmallamplitude oscillation. In particular, entrainment can
be effected by a weak pulse train. This seems a plausible scheme for the direct muscles
actuating insect wings for flight control. Indeed, it is compatible with the limit cycle
control hypothesis and also consistent with the asymptotically autonomous character
of the control proposed in [1]. This can be explained as follows. The wing-thorax
system of the insect oscillates with frequencyω0 and the wings are controlled by direct
muscles which are much smaller (weaker) than the thoracic muscles. If the direct
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muscles act on the wings with a weak, periodic force (amplitudeε and frequencyω),
they can retune the wing-thorax system to a new oscillating frequency wing-thorax�.
In general, this new frequency is different from the old one and the forcing one as well,
� 6= ω0 and� 6= ω. The larger the detuningω0−ω, the larger the amplitudeε must be
to achieve this new�. This can be captured precisely and illustrated graphically by the
entrainment region in theω-ε plane through the so-called Arnol’d tongues (triangle-
like regions with vertex atω = ω0, widening upwards for increasing values ofε). Also
worth noting, is that this theory is still applicable under random fluctuations, when
frequency diffusion is observed, a phenomenon consistent with a range of flapping
frequencies described in §4.2 of [1].

As for 2, a weak impulse train can be used to suppress oscillations. This means
forcing the system off a limit cycle to a neighbouring point equilibrium, in effect a
controlled Hopf bifurcation (see our previous Progress Report of November 2004).
Indeed, in both synchronisation and suppression, the Poincaré map (stroboscopic obser-
vation of nonlinear oscillations) of bifurcation analysis is a tool of choice.

Finally, it is worth mentioning that synchronisation issues are related to the observer
theory of nonlinear control [53]. The link is through the Reconstruction Theorem of
bifurcation analysis [54] which is a result systematising reconstruction of attractors
from data, hence providing a link between nonlinear theory and practical experiment.

2.6 Limiting equations

It was argued in §6.4 of [1] that, while the NLTP model is explicitly time-varying, it
must—in effect—be asymptotically autonomous (time-invariant). As mentioned in the
paper, the idea goes back to Markus [55], but there has been important progress in this
area [56, 57] since his paper appeared in 1956. In particular, stability theory has been
worked on with some success, e.g. see the appendix of [58]. More broadly, the method
of limiting equations has emerged as a relevant technique [59].

The main idea can be illustrated beginning with a non-autonomous ordinary differ-
ential equation

ẋ = f (t, x), t ≥ t0, (15)

where the right-hand side is defined forx in some open subset ofRn. Suppose that
there is a sequencetk → ∞ such that f (t + tk, x) → g(t, x) in the compact-open
topology. Then

ẋ = g(t, x) (16)

is a limiting system of (15). Various properties of the solutions of (15), e.g., bound-
edness and stability, can be deduced if the class of limiting systems (16) satisfies
appropriate conditions. Of particular interest is the case when the limiting equation
is itself autonomous, i.e. the right-hand sideg in (16) does not explicitly depend on
time t , g = g(x). For example,

ẋ1 = x2
ẋ2 = x1 + x2 + x1 sin

√
t (17)

has as its limiting equation

ẋ1 = x2
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ẋ2 = µx1 + x2, (18)

whereµ ∈ [0, 2]. More interestingly,

ẋ = g(x) + h(t, x) (19)

is asymptotically autonomous if for every sequenceuk of functionsuk: [a, b] → Rn,
continuous on[a, b] and converging tou0,∫ b

a
h(tk + s, uk(s))ds → 0.

There are two kinds of results on stability. The first kind deduces stability properties
of (15) from stability properties of (16) by constructing a Lyapunov function for (16).
The second kind uses a scalar comparison equation for (15). It is assumed that the
comparison equation admits a Lyapunov function. A main point is that a Lyapunov-
type function is only assumed to exist for the comparison equation; on the other hand,
the limiting comparison systems are assumed to have non-positive right-hand sides.

Finally, there are a few (but not many) results pertaining to the feedback control
problem. Here the issue is whether a feedback control law designed for (16) will also
work for (15). In general, this is a difficult question, but some results on stabilising
control can be derived.

3 Experimental work

This section presents experimental aspects of the project. As was mentioned in Section
1, we decided at an early stage to develop an experimental apparatus capable of making
the measurements required to parameterise the semi-empirical models described in
Section 2 for forward flight as well as for hover. The rationale for tackling this more
difficult problem at the outset was that it would be difficult later to adapt an apparatus
designed for simulating hover so as to allow us to simulate forward flight in future
work. The key challenge in simulating forward flight is to provide appropriate visual
motion stimuli at the same time as providing an airflow of variable speed and incidence
and a means of simulating the manoeuvres and body oscillations associated with natural
free flight. The solution that we have developed is described in detail in Section 3.3
below, but we begin by discussing results from several other experimental setups that
we have used in the course of developing this solution. We first discuss the results
of experiments to measure “dynamic derivatives” for desert locusts (Section 3.1). We
then recent work with free-flyingEristalishoverflies (Section 3.2). Finally, we provide
a detailed description of the new flight simulator (Section 3.3).

3.1 Dynamic stability/control derivatives of Desert Locusts

The experimental approach taken in [1] was to measure the instantaneous forces and
moments generated by locusts tethered statically in a wind tunnel, and to represent
the measured forces as time-periodic [1] fitted functions of speed and body angle.
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This experimental approach was designed to be analogous to the classical engineering
technique of measuring “stability derivatives” (see e.g. [60]), although it should be
noted that the “derivatives” measured here represent the combined effects of passive
stability and active control. Two major limitations of the experiments described in
[30, 1] were that it was not possible to measure the effects of pitch rate damping
(because the insect was tethered statically in the wind tunnel), and that the effects of
pitch attitude and aerodynamic incidence were conflated (because adjusting the body
angle of the insect changes its pitch attitude and aerodynamic incidence together). The
latter means that derivatives measured with respect to changes in body angle were
composite derivatives (see [60]), and it is therefore ambiguous how their effects should
be represented in the linear system matrix or non-linear map of the forces. These
experimental limitations are dealt with in detail in [1], a reprint of which is appended
to this report.

The experiments described in this section of the report were designed to overcome
the limitations of our earlier experimental work by: a) oscillating the locust in pitch
to measure the pitch rate damping, and b) allowing the freestream incidence to be
varied independently of the locust’s pitch attitude. The aim of these experiments was to
make quantitative predictions about the degree of visual feedback necessary to stabilise
locust flight, and to this end we were interested in measuring the insect’s response in
the absence of visual stimuli. The experiments were therefore conducted in a blacked-
out and darkened chamber. However, dim diffuse overhead lighting was provided to
allow the ocelli (simple light detectors) to operate, while preventing the compound eyes
from forming images. The exact light levels used were chosen to correspond to starlit
nighttime conditions, under which locusts will often fly when on migration.

3.1.1 Methods

Desert locustsSchistocerca gregariawere first scrutinised for good physical condition
(i.e. intact wings, appendages and antennae), and then selected on the basis of strong
free flight ability. The subjects were mounted on a miniature 6-component force-
moment balance via a mounting plate held in place by cyanoacrylate adhesive to the
ventral surface of the thorax (natural frequency of the locust-balance system, ca. 560Hz).
The insects were stimulated to fly in a jet of air of variable speed (0-5m/s) provided by
a laminar blower, and would fly reliably, without stopping, for periods in excess of 2h.
An infrared camcorder was used to monitor the locust’s movements in order to check
that it was flying consistently throughout the experiment.

The incidence of the airflow could be adjusted by tilting the blower (which was
mounted on a pivoting frame) away from the horizontal. Flight conditions were totally
dark, except for diffuse overhead lighting provided by an array of miniature DC tungsten
bulbs run from two 1.5V batteries. The bulbs were suspended above a circular diffuser
to remove any sharp contrasting edges from the locust’s field of view, and were intended
to provide the ocelli with the dorsoventral contrast necessary for flight stability, while
preventing the compound eyes from seeing the fixity of the static surroundings.

The force balance was mounted on a cradle suspended about a transverse horizontal
axis coincident with the insect’s centre of mass. The cradle could be driven through
a series of small amplitude pitch oscillations at frequencies up to 20Hz (just in excess of
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wingbeat frequency, 19Hz) in order to simulate the small amplitude pitching oscillations
expected to be experienced by locusts in flapping flight [1]. The dynamic forces and
moments generated by the locust were sampled at 10kHz using an analogue to digital
converter (Powerlab 16S/P), under the following flight conditions:

Pitch attitude series In these tests, force-moment measurements were taken over
a 200s sampling period while the locust’s body angle was varied in a slow (0.1Hz)
oscillation from 15◦ to 2◦ in a horizontal flow of 4ms−1.

Aerodynamic incidence series In these tests, force-moment measurements were
taken over 6s sampling periods with the locust’s body angle fixed at 9◦, but with the
angle of incidence of the oncoming 4ms−1 flow varied from−7◦ to 5◦, alternating
positive and negative to avoid correlating blower angle with time of measurement.

Speed series In these tests, the body angle of the locust was held fixed at 9◦ in a
horizontal flow. The speed of the blower was varied between 50% and 100% (approx-
imately 2 to 5ms−1), alternating speeds above and below the reference speed (70%,
4ms−1) to avoid correlating speed with time of measurement.

Pitch oscillation series In these experiments the locust was oscillated between 13◦

and 5◦ at a range of frequencies (1, 2, 4, 6, 8, 10, 15, 20Hz), in a horizontal flow of
4ms−1. The locust was also oscillated at its wingbeat frequency (ca 19Hz) as calculated
from the earlier measurements on order to simulate the periodic pitch oscillations that
locusts are expected to experience in free flight [1].

Calibration and weighing The inertial forces acting on the locust during the pitch
rate tests were measured directly by repeating the pitch rate tests after the locust had
been euthanised (by freezing) and set into a mid- downstroke posture using tiny amounts
of cyanoacrylate adhesive. The locust was enclosed by a plastic container which had no
contact with the force measurement apparatus, but was oscillated with the cradle. This
method parallels an engineering technique commonly used to measure tare loads during
dynamic wind tunnel testing. Following the experiments, the dead locust was weighed
to determine the mass of each body segment, to allow calculation of the position of its
centre of mass and of the moment of inertia about this point.

3.1.2 Results and analysis

At present, we have completed a time-invariant, but not yet time-periodic, analysis of
the forces and moments. This is justified on the grounds that the results of the analysis
predict that the time-invariant system is unstable in the absence of visual stimuli, and
it is unlikely that the more involved NLTP analysis would show the system to be
stable. On the other hand, the classical techniques of eigenvalue analysis permitted
under a linear time-invariant (LTI) framework allow quick estimates to be made of the
magnitude of damping that the vision-based control pathway would need to provide
for the system to be stable. The time-invariant analysis used follows a method similar
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to that described in [30] for the static measurements, but follows a slightly different
method for the oscillation series, using the dynamic calibration to correct the measured
forces. The details of this approach are not detailed further in the summary of the
experiments provided here.

Fig. 3.1.2 plots the measured forces against the state variables for a single individual,
typical of those from which measurements were taken. Forces measured in the speed
and aerodynamic incidence series are time-averaged; forces measured in the oscilla-
tion series are left as instantaneous measurements and plotted against instantaneous
pitch rate. Aerodynamic incidence, speed and pitch attitude derivatives were estimated
from these graphs as the slopes of the least-squares linear regressions fitted to the data.
Forces measured during the pitch attitude series were used to estimate the composite
pitch attitude and aerodynamic incidence derivatives, from which we were able to
estimate the pure pitch attitude derivatives by assuming that the composite derivatives
were the linear sums of the pitch attitude and aerodynamic incidence derivatives.

The various derivatives were then used to populate the LTI system matrixA, from
which the stability of the LTI system

ẋ = Ax (20)

could be determined. The LTI system was always found to be unstable, and we were
therefore able to estimate the degree of visual feedback required to stabilise the system
by assuming that visual feedback modifies the pitching moment derivative with respect
to pitch attitude. This allowed is to determine the degree of feedback required to a)
stabilise the system and b) provide critical damping of its oscillatory modes. This was
done by iteratively varying the value of the componentMθ (rate of change in pitching
moment with pitch atttitude) inA and recalculating the eigenvalues ofA for each value
of Mθ :

A =


XU /m Xα/mue Xq/m − we −g cosθe

ZU /m Zα/mue Zq/m + ue −g sinθe

MU /I yy Mα/I yyue Mq/I yy Mθ/I yy

0 0 1 0

 (21)

Using this procedure, analogous to the graphical root locus plot technique [3], we
were able to determine the critical values ofMθ for which a) the real parts of all of
the eigenvalues became negative and b) the imaginary parts of all of the eigenvalues
became zero.

In the case of the locust shown in Figs. 3.1.2, the model predicts that instantaneous
pitch attitude changes detected by the visual system would need to feed into the pitching
moment at a rate ofMθ = −1.3mN m rad−1 to provide stability and at a rate of
Mθ = −1.6mN m rad−1 to provide critical damping of the short period mode. To
provide some physical meaning to these otherwise rather abstract numbers, this is
equivalent to the resultant aerodynamic force shifting ca. 1mm aft for every degree
of positive pitch. Since the wing length of a desert locust is ca. 50mm, it is clear that
this ought to be achievable with relatively small changes in, for example, the mean
longitudinal position of the wings through the stroke.
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Figure 4: Graphs plotting the measured forces and moments against the state variables.
A. Time-averaged forces from the aerodynamic incidence series against aerodynamic
incidence. B. Time-averaged forces from the speed series against wind speed. C.
Instantaneous forces from the pitch attitude (slow oscillation) series against pitch
attitude, equal to aerodynamic incidence. D. Instantaneous forces from the pitch
rate (fast oscillation) series against pitch rate. Plots of instantaneous forces plot 1
datapoint in every 100. The black lines are least-squares linear regressions fitted to the
data; the line is solid if the slope is significantly different from zero (p < 0.05) and
dashed otherwise. The slope of the regression line gives the value of the corresponding
derivative, treated as zero if the slope was non-significant
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3.1.3 Discussion

In general, these experiments show that the effect of varying aerodynamic incidence
on its own differs from the effect of varying aerodynamic incidence and pitch attitude
together in the desert locust. This result confirms that the use of composite derivatives
in [30, 1] could lead to misleading results, as discussed in those papers, and argues
for the need to assess their effects separately as we have done here. The graphs also
confirm, as expected, that pitch rate has a significant effect on the forces and moments
produced. It is therefore essential that experiments on insect flight control should
measure pitch rate damping. Since the models developed using this incarnation of the
flight simulator apparatus (i.e a dynamic rig and variable-incidence wind tunnel with no
visual input) predict an LTI system that is unstable, we decided to go no further with
the analysis and instead to proceed with the development of the full flight simulator
apparatus described below. Aspects of the dynamic rig developed in the present set of
experiments are exploited in the new flight simulator design.

3.2 Preliminary experiments with Eristalis hoverflies

Because an eventual goal of this work was to derive a flight dynamics model for
Eristalis hoverflies, a key aspect of the experimental component of this study was to
verify whether the frequency response of our existing force balance was sufficient to
characterise the forces and moments generated by these insects, which have a wing-
beat frequency (ca. 150Hz) an order of magnitude higher than that of the desert locust
(ca. 20Hz). There are two distinct components to this question. The first is to determine
what frequency response is necessary to characterise those frequency components of
the flight forces and moments that impact upon the flight dynamics. The second is to
determine whether the force balance frequency response is sufficient for this.

In the case of the desert locust, we were able to measure statistically significant
harmonics of force production up to about the 8th harmonic of the fundamental wing-
beat frequency [1]. However, the NLTP flight dynamics model in [1] predicts that only
the fundamental frequency (19 Hz) is important in determining the flight dynamics:
the higher harmonics of the wingbeat frequency that we measured are, in effect, low-
pass filtered by the body dynamics. It is not possible to determine the effective cut-off
frequency for the hoverfly body dynamics directly without deriving its full equations
of motion, which in turn cannot be done without reliable measurements of the periodic
forces, and we therefore took the approach of observing the hoverfly body kinematics
directly during hovering flight using high-speed videography.

By making recordings of hoveringEristalis hoverflies using 4 high-speed digital
video cameras recording at 4000fps, we were able to verify that the time-periodic
forcing of the wingbeat is not manifested strongly in the body dynamics, as oscillations
of the body at the wingbeat frequency are scarcely discernible, even in video of suffi-
cient resolution to resolve individual hairs on the fly’s abdomen. This implies that it
may not be necessary to formulate the full time-periodic equations of motion in order
to model the flight dynamics ofEristalis hoverflies realistically. This is in contrast to
the situation for the larger desert locust, whose larger size and longer time constants
mean that a time-periodic model is essential, as shown in [1]. Arguably, because MAVs
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are likely to be closer in size to the locust than to the hoverfly, it is probable that a time-
periodic modelling framework will be necessary for modelling flapping-MAV flight
dynamics.

Because a time-periodic representation of the forces is probably unnecessary in
modelling hoverfly flight dynamics, it follows that if we can record the fundamental
frequency of the hoverfly wingbeat faithfully using our force balance, we may be
confident that the frequency response of the balance is adequate to model hoverfly flight
dynamics. The frequency response of the balance is almost 600Hz with a hoverfly
attached, and this should therefore be more than sufficient to measure reliably force
components at the fundamental frequency of the wingbeat (ca. 150Hz).

3.3 Flight simulator

The key experimental goal in our re-scoped and re-focussed study into experimental
aspects of insect flight dynamics modelling was to develop an apparatus suitable for
deriving flight dynamics models for any large insect, including desert locusts and
Eristalis hoverflies. The solution that we have finally reached is illustrated in Fig. 5.

Figure 5: Schematic of the layout of the new flight simulator. See accompanying text
for description.

Briefly, the insect is tethered to a 6-component force-moment balance mounted on
a sting that can be oscillated in pitch, yaw or coning motions, similar to an arrangement
formerly used by NASA in wind tunnel tests of high-performance aircraft. Airflow is
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provided by an open-circuit cylindrical suction tunnel manufactured from clear cast
acrylic, with clear plastic computer cooling fans used to induce an airflow quietly. The
wind tunnel is transparent to allow the insect to see through its walls and onto the
spherical projection screen that surrounds the whole apparatus. Two/three customised
computer data projectors are used to back-project moving visual stimuli, comprising
synchronised XGA binary images projected at frame rates in excess of 8kHz. This
allows us to project moving images that will appear flicker-free and smooth, even to
flies (which have an extremely fast visual system). The setup thereby provides an
immersive visual environment for insects as well as airflow and inertial stimuli, and
forms a complete virtual reality environment simulating natural free-flight.

A detailed description of the various components of this system is currently in
preparation as a methods paper for publication in the biomechanics/neurophysiology
literature. The flight simulator itself is the centrepiece of a recently-awarded BBSRC
grant to GKT, in which flight dynamics models are to be developed for blowflies and
locusts, and combined with recordings from certain visual processing neurons made
by Dr Holger Krapp (Imperial College) and Prof. Simon Laughlin (Cambridge). This
research will provide basic data needed to link internal and external models of flight
dynamics of the kind discussed in Section 2.

References

[1] G. K. Taylor and R. Żbikowski. Nonlinear time-periodic models of the
longitudinal flight dynamics of desert locustsSchistocerca gregaria. Journal of
the Royal Society Interface, 2(3):197–221, 2005.

[2] J. Roskam. Airplane Flight Dynamics and Automatic Flight Controls. Part I.
DARcorporation, Lawrence, KS, 1995.

[3] B. Etkin and L. D. Reid.Dynamics of Flight. Stability and Control. Wiley, New
York, Third edition, 1996.

[4] V. A. Yakubovich and V. M. Starzhinskii.Linear Differential Equations with
Periodic Coefficients, volume 1. Wiley, New York, 1975.

[5] K. J. Orlik-Rückemann. Aerodynamic aspects of aircraft dynamics at high angles
of attack.Journal of Aircraft, 20(9):737–752, 1983.

[6] G. J. Hancock.An Introduction to the Flight Dynamics of Rigid Aeroplanes. Ellis
Horwood, New York, 1995.

[7] M. Tobak and L. B. Schiff. The role of time-history effects in the formulation of
the aerodynamics of aircraft dynamics. InDynamic Stability Parameters, volume
235 ofAGARD Conference Proceedings, pages 26.1–26.10. 1978.

[8] H. Wagner. Über die Entstehung des dynamischen Auftriebes von Tragflügeln.
Zeitschrift für Angewandte Mathematik und Mechanik, 5(1):17–35, 1925.

19
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